Seconde Partie: Comment ça Marche ?








télécharger 101.96 Kb.
titreSeconde Partie: Comment ça Marche ?
page1/3
date de publication02.07.2017
taille101.96 Kb.
typeDocumentos
ar.21-bal.com > loi > Documentos
  1   2   3

Seconde Partie: Comment ça Marche ?

On va maintenant parler un peu technique (faudra bien, hein ?), de manière à comprendre le fonctionnement de cette merveille technologique... Je ne vous donnerai pas un cours théorique sur l'hélicoptère, ce n'est pas le but (et en plus, j'en serai incapable !). Je vous expliquerai juste quelques bases, histoire de savoir un peu comment ça marche !

 Présentations




Un hélicoptère, c'est cette drôle de machine volante qui peut décoller et atterrir à la verticale !

Elle peut aussi se déplacer dans tous les sens, haut bas, droite gauche, en marche avant et en marche arrière et tourner sur elle-même !

La grosse hélice qui est dessus n'est pas la clim. Non ! C'est le rotor principal. II sert à procurer la sustentation de l'ensemble en tournant à une certaine vitesse. II aspire l'air de dessus pour le refouler vers le bas. Ça va là ? Bon

Le rotor principal est entraîné par le moteur qui peut être électrique ou thermique (à explosions).

A l'arrière, au bout du fuselage, se trouve une petite hélice, qui s'appelle le rotor anti-couple. Son rôle est de contrer le couple de rotation du fuselage, qui a tendance à tourner en sens inverse du rotor principal, lorsqu'il est entraîné par le moteur.

Jusque là, ça va aussi ? Bon ! Continuons !



 Comment ça se dirige ?

1) Stationnaire

Lorsque l'hélicoptère vole en faisant du « surplace » sans bouger et sans être en contact avec le sol, il est en équilibre dans l'air. On dit qu'il est en stationnaire.

Le rotor principal tourne et décrit un disque de portance qui aspire de l'air au dessus de lui et le renvoie vers le bas. Le pas (incidence) de chaque pale est positif et identique, ce qui procure la portance.

Les forces de sustentations sont égales dans toutes les portions de ce disque, quelle que soit la position de chaque pale. Les deux pales possèdent la même incidence, qui restera identique, quelles que soient leurs positions dans ce disque.

 

Similitudes entre un hélicoptère et un avion



Les mêmes axes sont pilotés de la même manière entre un hélicoptère et un avion. En haut lorsqu'on met le manche de commande de l'axe de tangage en cabré par exemple, le nez se lève pour les deux (cyclique longitudinal pour l'un, profondeur pour l'autre).

Au milieu, lorsqu'on met le manche de commande de 1'axe de laces à droite par exemple, le nez va à droite pour les deux (anticouple pour l'un, dérive pour l'autre.)

En bas, lorsqu'on met le manche de commande de l'axe de roulis à gauche par exemple, les deux s'inclinent à gauche (cyclique latéral pour l'un, ailerons pour l'autre). C'est vu de face ! Hein?

 

2) Monter et descendre

Lorsqu'on voudra le faire monter ou descendre, il suffira d'augmenter cette incidence sur les deux pales en même temps (le pas collectif) du rotor principal afin d'augmenter sa force de sustentation. Ainsi notre hélico montera. Pour descendre, il suffira de la diminuer (l'incidence !).



Par contre, lorsqu'on met les gaz, l'hélicoptère monte, tandis que l'avion avance plus vite...

(manche gaz/pas pour l'un, manette des gaz pour l'autre).

3) Axe de lacet

Le rotor anti-couple tourne et possède une certaine valeur de pas (incidence des pales) afin de procurer la force nécessaire pour contrer le couple de rotation du fuselage, créé par l'entraînement du rotor par le moteur. En effet, le rotor tournant dans un sens, le fuselage aura tendance à tourner en sens inverse, cherchant à prendre un appui sur l'air, qu'il ne trouvera que grâce au rotor anti-couple.

Pour le faire pivoter sur l'axe de lacet dans un sens ou dans l'autre (autours de lui-même), on fera varier plus ou moins le pas du rotor anti-couple. II augmentera ou diminuera ainsi son action.



Démonstration pour un rotor tournant à droite (sens horaire).

Le rotor anti-couple est une hélice qui tourne en même temps que le rotor principal. II permet par sa poussée, de combattre le couple de rotation du fuselage (flèche rouge), créé par le rotor principal entraîné par le moteur. Le fuselage ayant tendance à tourner en sens inverse (ici à gauche), cherchant un appui sur l'air.

Cette hélice possède 2 pales (ou plus !), qui ont toutes les deux la même incidence entre elles.

Cette incidence est variable. Elle est commandée par la commande anti-couple. Ca permet d'augmenter ou de diminuer (voire inverser) l'efficacité du rotor anti-couple.

En stationnaire, l'incidence est d'environ 10°, ce qui lui permet de combattre le couple de rotation du fuselage.

1- Lorsqu'on n'applique aucun ordre à l'anti-couple, sa poussée ne fait que contrer la rotation du fuselage. Le fuselage reste droit.

2 - Lorsqu'on lui applique un ordre à gauche, on diminue l'incidence de ses pales, et donc son efficacité. La poussée du rotor anti-couple diminue. Le fuselage tourne à gauche.

3 - Lorsqu'on lui applique un ordre à droite, on augmente son incidence et donc son efficacité. La poussée du rotor anti-couple augmente. Le fuselage tourne à droite.

4) Axe de tangage et roulis

Maintenant, si nous voulons incliner notre bestiole, on ne bougera pas l'axe du rotor principal comme pourraient le croire les néophytes.

On fera «tout simplement » varier le pas des pales du rotor principal sur une certaine portion de son disque.

Par exemple si on veut incliner le fuselage en avant, on augmentera le pas des pales lorsqu'elles passeront derrière, et on le diminuera lorsqu'elles passeront devant. Ceci est possible grâce au plateau cyclique.

La force de sustentation à l'arrière sera ainsi augmentée et celle à l'avant, diminuée.

Ainsi le disque n'ayant plus une portance égale sur toute sa surface, un couple se créera, qui inclinera notre hélicoptère dans la direction souhaitée, soit dans notre exemple vers l'avant.

 La précession gyroscopique

Bon là, il faut commencer à s'accrocher..!

Si j'ai simplifié ainsi c'est pour faciliter la compréhension pour un néophyte, car il faudra bien sur (!), tenir compte de la précession gyroscopique du système en rotation qui décale de 90° (un quart de tour) l'action avec la réaction.

Pour s'en convaincre, il suffira de faire le test de la roue de vélo !

Démontez la roue de votre VTT favori, et tenez-la à l'horizontale par son axe en tendant les bras devant vous. Demandez à quelqu'un de la faire tourner, et essayer de l'incliner vers l'avant en poussant l'axe du haut et en tirant l'axe du bas. Oh ! Elle part sur le coté ! (En passant, vous vous rendez compte qu'il faudra faire un certain effort pour manœuvrer cet axe. C'est une des caractéristiques du gyroscope, la fixité dans l'espace.)

Pour qu'elle s'incline vers l'avant, il faudra l'incliner sur un coté ! Le coté dépendra du sens de rotation de votre roue.

Ben oui ! Vous venez de découvrir la précession gyroscopique !

Comment ça Marche ?



Lorsqu'on veut prendre de l'altitude à partir du stationnaire (force de sustentation du rotor égale à la masse de 1'hélico), on fait varier l'incidence des 2 pales en même temps. On fart donc varier le pas de manière collective. La portance du disque rotor augmente de manière uniforme, et est supérieure à la masse de 1'hélicoptère. II monte... Comme la traînée du rotor augmente en même temps que son pas, il a tendance à diminuer sa vitesse. Le moteur peine un peu plus. C'est pourquoi on augmente en même temps son régime. Ainsi, le rotor tourne à une vitesse constante. C'est ce qu'on règle avec les courbes gaz/pas.



Exemple pour un rotor tournant à droite (sens horaire)

A gauche, aucun ordre n'est appliqué au rotor. La portance est égale sur toute la surface du disque rotor.

A droite, un ordre à piquer est appliqué à l'hélicoptère. Le plateau cyclique transmet cet ordre aux pales du rotor. La portance du disque rotor change et devient inégale.

Elle est plus importante sur la zone rouge que sur la zone jaune. On pourrait penser que le rotor basculerait sur sa gauche ! Mais il faudra compter sur la précession gyroscopique, qui décale de 90° 1 action et la réaction. Ce qui fart que le disque rotor s'inclinera vers l'avant dans ce cas.

De part l'architecture de l'ensemble tête de rotor, barre de Bell et de ses commandes, vous ne vous en rendrez pas compte. Le plateau cyclique s'inclinera en avant pour un ordre à piquer. C'est le même principe pour les autres inclinaisons (cabré, droite et gauche)



II se passe la même chose sur nos chers hélicos, mais le système est tellement bien fait que vous ne vous en rendrez même pas compte !

En effet, les commandes de cyclique longitudinal et latéral passent par le plateau cyclique qui transmet les ordres aux biellettes du pas de chaque pale par l'intermédiaire du mélangeur (washout) et de la barre de Bell (voir plus loin les détails de fonctionnement de celle-ci). Tout ce petit monde se charge de décaler les ordres.

Ce qu'il faut retenir, c'est que pour un rotor bipale, lorsqu'on incline le plateau cyclique en avant par exemple, l'hélico se penchera vers l'avant. Si on l'incline sur la droite, l'hélico ira à droite. Donc pour visualiser l'action des commandes longitudinales et latérales, il suffira de regarder dans quel sens s'oriente le plateau cyclique. On verra plus loin en détail comment ça marche.

 Présentation simplifiée d'un hélicoptère radiocommandé

Rentrons maintenant dans le vif du sujet, en faisant une petite présentation d'un ensemble complet d'hélicoptère radio commandé.

La radiocommande



Un ensemble de radio commande est composé d'un émetteur, qui envoie par les ondes hertziennes (grâce à son antenne) les ordres du pilote (par les manches). Son énergie électrique est fournie par une batterie interne.

La partie embarquée, que l'on nomme réception se compose d'un récepteur, (qui reçoit les ordres de 1 émetteur par son antenne), des servomoteurs, (qui transforment les ordres électriques en mouvements mécaniques), et d'une batterie (qui fournit l'énergie électrique à l’ensemble).

 

1) La radiocommandé:

Commençons tout d'abord par le moyen de pilotage, qui nous permettra de diriger à distance notre hélicoptère : la radio commande (les modélistes radio pourront sauter ce chapitre !).

L’émetteur

Un ensemble de radio commande se compose de plusieurs éléments.

Tout d'abord nous avons l'émetteur qui est ce gros boîtier qu'on tient dans les mains, et qui est muni d'une antenne télescopique, de 2 manettes (manches) et de boutons. Ce boîtier renferme des composants électroniques qui permettent de transformer les ordres venant des manettes et des boutons et les envoyer en ondes hertziennes par l'antenne...

Un accu fourni l'énergie électrique indispensable pour son fonctionnement. Un interrupteur permet la mise en marche ou l'arrêt de l'émetteur.

Sur les radios programmables (on verra ça plus loin en détails), un écran à cristaux liquide permet un affichage des fonctions en route. II permet aussi de visualiser les réglages de ces fonctions, et la tension de la batterie. Sinon sur les « non-programmables », seul un vumètre renseigne sur la tension de la batterie.

Les 2 manettes sont appelées les manches. Ils peuvent se mouvoir de haut en bas et de droite à gauche. Chaque manche est affecté à 2 fonctions qui s'appellent des voies (donc 2 manches = 4 voies...).

Ils possèdent tous les deux un retour au neutre sauf celui qui commandera le carburateur du moteur qui, lui, est cranté de haut en bas et qui s'appelle la manette des gaz.

Ces manches sont les commandes principales nécessaires pour diriger notre engin. On verra plus loin en détail l'affectation des fonctions.

Les 4 petits boutons autours de ces manches sont des trims, et permettent eux de déplacer artificiellement le neutre de chaque manche.

Les autres boutons sont des interrupteurs affectés à des fonctions particulières ou des voies supplémentaires, que nous verrons plus tard.

Réception

Le reste des composants de l'ensemble de radio commande est la partie embarquée qu'on nomme la réception. C'est elle qui sera montée dans notre hélicoptère. Elle reçoit les ordres venant de l'émetteur.

II y a tout d'abord le récepteur qui est cette petite boite noire, bourrée de composants électroniques, munie de connecteurs et d'un long fil. Ce fil est l'antenne et il ne doit surtout pas être raccourci. II reçoit les ordres de l'émetteur par l'intermédiaire de cette antenne.

Ensuite on trouve un interrupteur à glissière qui permet le branchement d'une batterie qui fournit l'énergie électrique nécessaire au fonctionnement de l'ensemble électronique. Nous trouvons enfin les servomoteurs qui sont ces cubes noirs. Ils permettent de transformer les ordres électriques du récepteur en mouvements mécaniques. Un cordon avec une prise permet de les brancher sur le récepteur. Sur le dessus de ces servomoteurs se trouve un palonnier rotatif en plastique qui permettra l'accrochage des tringles de commandes de notre hélicoptère.

Enfin, de chaque coté, il y a 2 pattes de fixation qui permettent de les fixer dans la cellule à l'aide de petits amortisseurs en caoutchouc (silentblocs) et de vis auto-foreuses fournis.

Pour résumer, lorsque l'ensemble est en ordre de marche, et qu'on bouge les manches de l'émetteur, les palonniers des servomoteurs bougent de manière proportionnelle...

Transmission

La portée radio avec les antennes déployées (émetteur et récepteur) est généralement de quelque centaine de mètres au sol, jusqu'à perte de vue en l'air.

Des quartzs de fréquence (fragiles) présents dans l'émetteur et dans le récepteur permettent à l'ensemble de fonctionner. Ces quartzs sont facilement amovibles, afin de pouvoir changer aisément de fréquence.

Les bandes de fréquences autorisées en France pour les radiocommandés de modèles réduits sont la bande des 41 MHz (41.000 à 41.200 MHz en fréquences paires) et des 72 MHz (72.210 à 72.490 MHz en fréquences impaires).

La bande des 26 MHz est autorisée aussi, mais est réservée plutôt aux jouets et autres gadgets...

Si on allume 2 radios possédant la même fréquence, il y a brouillage. II faut que les fréquences soient espacées d'au moins 20 kHz pour éviter le brouillage. C'est important à savoir, surtout si d'autres modélistes volent en même temps que vous allumez votre radio (un avion ou un hélicoptère peuvent tomber à la suite d'un brouillage car les commandes frétillent, ne répondent plus ou vont en butée..!).

Donc il faudra toujours vérifier si votre fréquence est disponible avant d'allumer la radio sur un terrain où sont présents d'autres modélistes, et vous conformez le cas échéant au règlement du club sur ce sujet (tableau de fréquence.

Le mode de transmission est généralement la FM. Le type de codage peut-être le PPM (analogique), ou le PCM (numérique). Ce dernier serait le plus «durci » au niveau brouillage. II permet une programmation de position des servomoteurs en cas d'interférences entre autre. Les récepteurs PCM coûtent 2 fois plus chères que les PPM... Je ne m'étendrais pas plus sur le sujet, chaque mode ayant ses partisans et ses tracteurs ...euh ! Ses détracteurs, pardon !

Un chargeur de batterie spécifique (avec les cordons de charge qui vont bien) est nécessaire pour recharger les accus de l'émetteur et du récepteur (il est en effet impensable de faire voler un hélicoptère RC avec un porte-piles, pouvant être sujet à de faux-contacts soumis aux vibrations ! Des accus soudés s'imposent). Généralement il est livré avec l'ensemble de radiocommandé, mais pas toujours ....

2) L'hélicoptère

Poursuivons l'investigation, par une présentation de la bête, cette fois

Un hélicoptère modèle réduit est généralement composé d'un châssis autoportant en alu, ou bien moulé en plastique armé fibre de verre. Parfois, sur les hauts de gammes il est en carbone.

Dans ce châssis sont fixées toute la mécanique, la motorisation et toute la partie électronique embarquée de la radiocommandé.

Un tube en alu ou en carbone, fixé sur ce châssis et parfois haubané, contient la transmission et la commande du rotor anti-couple. Ce dernier, ainsi que les empennages sont fixés au bout de ce tube.

Un carénage en fibre de verre ou en plastique moulé (cabine) recouvre le châssis, et est rapidement démontable. Ainsi, l'accès aux composants mécaniques et électroniques est très facile, ce qui permet des réglages et un entretien aisés. L'ensemble repose sur le train d'atterrissage composé d'arceaux en plastique moulé, armé de fibre généralement, et de patins en tube alu.

Les commandes entre les servomoteurs et les différentes biellettes sont généralement faites en cordes à piano avec à leurs extrémités des chapes à rotule en plastique avec une bille métallique, permettant leur raccordement.

Toutes les pièces en rotation ou renvois d'angle sont soit munis de bagues en bronze, soit de petits roulements à bille, afin de réduire les frottements et les jeux mécaniques.

Les pales principales peuvent être soit en bois avec des lests incorporés et revêtus d'un film plastique, soit en fibre de verre ou carbone moulé.

Les pales du rotor anti-couple sont généralement en plastique moulée.

II existe bien sûr des reproductions plus ou moins fidèles d'hélicoptères grandeurs, avec une carrosserie en plastique ou en fibre de verre dans laquelle est fixée la mécanique, mais c'est le genre de modèle qu'il vaut mieux oublier au début.

La complexité de l'installation mécanique, l'accessibilité réduite (maintenance difficile), les qualités de vol de ces machines (hélicos généralement plus lourds) ainsi que le prix de revient, les faits réservés aux pilotes expérimentés.

 

 

 

Après nous être penchés le mois dernier sur la théorie du vol des hélicos et avoir détaillé les fonctionnalités nécessaires à leur pilotage sur une radio, étudions de plus près ce mois-ci la machine en elle-même à travers la description de sa mécanique...

 

  1   2   3

similaire:

Seconde Partie: Comment ça Marche ? iconLe réseau mobile : comment ça marche ?

Seconde Partie: Comment ça Marche ? iconPremière partie
«Grand théâtre Duchatellier»; dans les côtés s’ouvraient des fenêtres à persiennes, et de son toit sortait un bout de tuyau en t...

Seconde Partie: Comment ça Marche ? iconPartie 1- clauses géNÉrales
«Entrepreneur général» désigne la personne ou la compagnie responsable de l'exécution de l'ensemble des travaux, de la coordination...

Seconde Partie: Comment ça Marche ? icon16 jours / 15 nuits – update: 20/12/2010
«maisons tube», un style d'architecture très ancien de cette partie de Hanoi. Ensuite, visite du marche de Dong Xuan. Déjeuner

Seconde Partie: Comment ça Marche ? iconJournée d’étude «jeunes chercheurs»
«normes». Comment sont-elles pensées ? En fonction de quelles représentations des territoires par les institutions ? Comment sont-elles...

Seconde Partie: Comment ça Marche ? iconI comment Candide fut élevé dans un beau château, et comment IL fut chassé d’icelui

Seconde Partie: Comment ça Marche ? iconHdpa mandataire du Maître d’Ouvrage ehpad les portes du jardin –...

Seconde Partie: Comment ça Marche ? iconHdpa mandataire du Maître d’Ouvrage ehpad les portes du jardin –...

Seconde Partie: Comment ça Marche ? iconLes doubles personnalites la conscience profonde
«Je suis sur cette terre. J'ignore absolument comment j'y suis venu et pourquoi on m'y a jeté. Je n'ignore pas moins comment j'en...

Seconde Partie: Comment ça Marche ? iconLa psycholinguistique Introduction
«les principes du béhaviorisme ne sont suffisants pour expliquer comment on traite une information langagière et comment on apprend...








Tous droits réservés. Copyright © 2016
contacts
ar.21-bal.com