Introduction aux protéines








télécharger 0.63 Mb.
titreIntroduction aux protéines
page4/25
date de publication09.09.2018
taille0.63 Mb.
typeDocumentos
ar.21-bal.com > comptabilité > Documentos
1   2   3   4   5   6   7   8   9   ...   25

3.1 EXPERIENCE DE MESELSON ET STAHL:

Il s'agissait de "marquer" les éléments anciens (négatif et positif) et de les suivre lors de la transmission aux générations suivantes. Le marqueur choisi a été un isotope lourd de l'azote : l'azote 15 (15N), en raison de l'abondance des atomes d'azote dans les bases organiques de l'ADN, si tous sont constitués de l'isotope lourd, la molécule d'ADN résultante sera légèrement plus dense que celle d'ADN habituel (comportant de l'azote 14) et il va s'avérer possible de séparer ces deux types de molécules par une centrifugation à l'équilibre dans un gradient de densité de chlorure de césium (gradient qui "encadre" les densités des ADN à étudier). Le matériel expérimental est une cellule procaryotique : Escherichia coli. Les bactéries sont en effet les cellules présentant le plus haut rendement synthétique et dans des conditions standard se divisent environ toutes les trente minutes ce qui va permettre d'accéder à plusieurs générations et donc à plusieurs cycles de réplication de l'ADN en un temps raisonnable.

Le protocole expérimental reste un modèle du genre : dans un premier temps des bactéries sont cultivées sur un milieu contenant l'isotope lourd de l'azote, après un délai correspondant à plusieurs cycles cellulaires, la comparaison des ADN purifiés à partir de ces bactéries et d'ADN provenant de cellules normales "14N" montre qu'il est effectivement possible de les séparer .
Les bactéries dont l'ADN est ainsi marqué sont ensuite cultivées sur un milieu normal de telle sorte qu'à partir de cet instant, toute synthèse se fera à partir d'azote 14, des prélèvement sont effectués de génération en génération et les ADN analysés. Les résultats présentés dans la figure, montrent qu'effectivement, en première génération, un ADN de densité hybride est caractérisé, la suite de l'expérience montre clairement que l'hypothèse de réplication semi conservative était juste !

Très rapidement, plusieurs travaux remarquables confirment le mode de réplication de l'ADN et laissent entrevoir la complexité du contrôle génétique de cette biosynthèse.

Dans les années 50 à 60, Kornberg réalise une première synthèse d'ADN in vitro et Cairns "visualise" la réplication en microscopie électronique.

3.2 SYNTHESE D'ADN IN VITRO : première manipulation génétique

Les séries d'expériences réalisées par Kornberg et son groupe préfigurent la génétique moléculaire moderne et méritent que l'on s'y arrête.

Le mode semi-conservatif de la synthèse de l'ADN implique les éléments suivants :

  • - une molécule d'ADN double brin capable de servir de modèle,

  • - des désoxyribonucléotides précurseurs de la chaîne nouvelle,

  • - une enzyme : ADN-polymérase, capable de les relier, cette enzyme (hypothétique pour l'instant) est fondamentale car non seulement elle devra assurer la liaison covalente (3'-5' phosphodiester) entre les nucléotides mais elle devra aussi être capable de "choisir" ceux-ci en fonction du modèle présent selon la régle d'appariement des bases.

3.2.1 POLYMERISATION DE DESOXYRIBONUCLEOTIDES IN VITRO

Pour purifier et étudier cette enzyme, Kornberg a mis au point un système de synthèse in vitro à partir d'extraits d'abord assez grossiers d'E. coli.
Comment évaluer de tels systèmes ? Comment prouver qu'une synthèse a bien lieu in vitro ? Comment distinguer l'ADN néosynthétisé de celui qui est obligatoirement présent dans l'extrait comme modèle ?
Kornberg va lui aussi faire appel à des marqueurs isotopiques : des nucléotides comportant des phosphores 32 radioactifs (32P), si une synthèse a lieu, elle fera appel à ces précurseurs radioactifs et le polymère résultant sera "marqué", sera radioactif et facilement repérable. D'après l'analyse des nucléotides libres présents dans le cytoplasme, Kornberg décide de choisir des nucléotides triphosphorylés en 5' alors que les constituants de l'ADN sont monophosphorylés et que bien souvent, l'hydrolyse de polynucléotides produit des mononucléotides phosphorylés en 3' ! On verra que sans cette décision, l'expérience était vouée à l'échec : la cellule utilise effectivement des nucléotides 5' triphosphorylés et l'énergie fournie par la libération du pyrophosphate.

*Remarque concernant l'utilisation de précurseurs radioactifs

Dans son mélange réactionnel, Kornberg dispose d'ADN modèle, de précurseurs naturels, de l'ADN polymérase active (il l'espère), auquel il ajoute des précurseurs radioactifs. Après la réaction, la radioactivité se trouvera partagée entre l'ADN éventuellement synthétisé in vitro (en incorporant des monomères marqués) et l'excédent de précurseurs qui n'ont pas été incorporés. Il est donc essentiel d'éliminer tous ces précurseurs libres pour attribuer de la radioactivité à une macromolécule. En pratique, les macromolécules sont précipitées par adjonction d'un acide organique et les petites molécules "acido-solubles" (y compris les précurseurs radioactifs) sont éliminées par centrifugation. Le culot, après plusieurs lavages, contient les macromolécules (y compris l'ADN) débarrassées de tout précurseur non incorporé dans la chaîne.

En suivant la stratégie exposée et ses contraintes, Kornberg fut capable de trouver quelque radioactivité dans des fractions acido-précipitables. Radioactivité qui, à l'époque ne dépassait guère le seuil de confiance des compteurs, mais Kornberg y croyait !
Plusieurs équipes, partant de kilogrammes de pâte d'E.coli, à l'aide de méthodes d'analyse biochimique classiques de nos jours mais que l'on découvrait à l'époque, ont peu à peu concentré l'activité de l'ADN polymérase jusqu'à purifier cette enzyme qui fut nommée "polymérase de Kornberg".

Le bilan (provisoire) de ces expériences est le suivant :



3.2.2 REPLICATION IN VITRO

L'expérience décrite ci dessus prouve qu'une synthèse de polydésoxyribonucléotide est réalisable in vitro mais ne prouve pas que l'ADN synthétisé est conforme au modèle ni que la synthèse soit une réplication semi-conservative.
La suite du travail va consister à tenter la synthèse in vitro d'un ADN "biologiquement actif", l'activité biologique la plus facile à détecter étant, à l'époque, la capacité d'infection d'un ADN de bactériophage.

Le modèle choisi est le phage ÞX 174 soit une molécule circulaire d'environ 5000 nucléotides seulement. Nucléotides et non pas paires de nucléotides car il s'agit, pour la particule phagique d'un ADN simple brin que nous appellerons le brin +. Le changement d'un seul de ces nucléotides rend la molécule inactive (non infectieuse). La réalisation d'une copie infectieuse in vitro va préfigurer la technologie de l'ADN recombinant.

  • - In vivo, la première étape de l'infection par ce bactériophage simple brin est la synthèse d'un brin complémentaire pour réaliser une forme circulaire double brin à partir de laquelle seront reproduits des brins + qui assureront la descendance phagique.

  • - Un premier problème se posa pour la synthèse in vitro d'un brin - : l'ADN polymérase purifiée ne peut qu'attacher l'extrémité 5' d'un nucléotide à l'extrémité 3' d'une chaîne en cours de synthèse, elle ne peut relier des polynucléotides et donc ne peut pas réaliser la liaison phosphodiester qui permet de circulariser un brin d'ADN. Le problème a été résolu par la purification d'une enzyme qui, in vivo, remplit cette fonction : l'ADN ligase dont nous aurons souvent l'occasion de parler.

    • Le système va donc comprendre :

    • des molécules d'ADN purifiées de ÞX 174 (brin +)

    • les 4 désoxyribonucléotides

    • l'ADN polymérase

    • la ligase

  • en principe, il doit assurer la synthèse de brins - complémentaires du brin plus et circulaires (Figure II.6 1 - 3).

  • - Deuxième problème : comment séparer les brins - des brins + ?

  • Ce deuxième problème a été surmonté par l'utilisation d'un précurseur particulier à la synthèse d'ADN : la 5-bromodésoxy uridine, cet analogue de nucléotide est utilisé par la cellule comme de la thymidine (sera apparié à l'adénine) mais le brome va "alourdir" la molécule d'ADN qui utilise ce précurseur. La différence de densitéest suffisante pour permettre la séparation de brins + (comportant de la thymidine) de brins - (comportant de la bromodésoxyuridine) par ultracentrifugation sur un gradient de densité de CsCl (Figure II.6 4 et 5).

  • - Troisième problème : le brin - synthétisé in vitro n'est pas infectieux, seul un brin + peut l'être. Il va donc falloir recommencer une synthèse in vitro en utilisant les brins - comme modèles.

Cette stratégie a permis de synthétiser des molécules qui vont s'avérer infectieuses : aucune erreur sur 5000 nucléotides assemblés in vitro !

3 .3 OBSERVATIONS DE CAIRNS

Cairns a été le premier à observer un chromosome entier d'E. coli en cours de réplication.

Il a associé des techniques de marquages isotopiques et d'autoradiographie suivie d'observation en microscopie électronique. Après avoir cultivé des bactéries dans un milieu contenant de la thymidine tritiée à faible activité spécifique, pendant un temps dépassant la durée du cycle, il met au point une méthode de lyse de la cellule permettant de libérer l'ADN directement sur une grille de microscopie électronique, en minimisant les risques de cassures mécaniques de la molécule.

La préparation est recouverte d'une émulsion photographique et après exposition et développement, l'examen révèle des grains d'argent le long de la molécule d'ADN . Ces premières observations ont montré la circularité du chromosome d'E.coli, forme qui s'avérera très répandue chez les procaryotes, les virus et l'ADN des organites (mitochondries et chloroplastes) des cellules eucaryotiques. Dans un second temps, Cairns a effectué des marquages plus courts et déduit des images présentée que la réplication commence en un point du chromosome bactérien et fait le tour de celui-ci. Un peu plus tard, d'autres chercheurs ont ajouté à un marquage long par la thymidine tritiée à faible activité spécifique un marquage très bref par de la thymidine tritiée à forte activité spécifique. Après autoradiographie, l'intensité des grains permet de distinguer les deux marquages. On observe alors, des sortes de "bulles".

L'interprétation de ces figures va avoir un impact considérable.

  • - d'après l'observation de ces "fourches" , il est clair que la réplication se fait à partir des deux brins anciens simultanément (les figures matérialisées par les grains d'argent seront appelées fourches de réplication).

  • - puisque l'on observe deux de ces fourches, c'est que la réplication est bidirectionnelle.

  • - si la réplication est bidirectionnelle c'est qu'il existe une "origine de réplication". Cette notion n'est pas que topographique, on verra qu'effectivement, seule une séquence précise de ces molécules circulaires permet le démarrage de la réplication. Dans la cellule Eucaryote, les chromosomes comportent des molécules linéaires d'ADN très longues et il existe plusieurs origines de réplication par chromosome, également caractérisées par des séquences précises.

Un élément quelconque d'un génome, naturel ou obtenu par génie génétique, ne pourra être répliqué (et donc transmis à une descendance) que s'il possède une origine de réplication, il sera alors considéré comme un "réplicon".

3.4 MECANISMES GENERAUX DE LA REPLICATION

Très rapidement, les études génétiques et biochimiques de la réplication ont montré que le mécanisme est beaucoup plus complexe que ne l'évoque la prédiction de Watson et Crick et que ne le laissent supposer les expériences de Meselson et Stahl (qui ne rendent compte de l'ADN qu'avant et après la réplication), de Kornberg (qui isole la réplication de son contexte cellulaire) ou de Cairns (qui fixe une image instantanée)

Tous les transferts d'information que nous allons étudier comportent trois étapes dans la synthèse de molécules informatives : le début, la suite et la fin que l'on préfère appeler les étapes d'initiation, d'élongation (de la macromolécule en cours de synthèse) et de terminaison.
Des mutants pour chacune de ces étapes ont permis de les étudier en détail, c'est l'initiation qui représente certainement l'étape clé de la réplication.

                                           

- Une première difficulté d'interprétation est venue de l'étude du fonctionnement de l'ADN polymérase : elle permet la liaison de nucléotides à l'extrémité 3' d'une chaîne polynucléotidique. Les deux brins anciens, servant de modèles, étant antiparallèles, comment expliquer l'observation d'une synthèse bidirectionnelle, simultanée pour les deux brins avec fourche de réplication ?

Une hypothèse de synthèse continue sur l'un des brins et discontinue sur l'autre a été confirmée par Okasaki qui, par centrifugation sur gradient de densité a pu isoler des intermédiaires de synthèse de l'ADN d'environ 150 paires de bases. Ce modèle de "un pas en avant, deux pas en arrière, un pas en avant etc..." effectués par l'ADN polymérase sur l'un des deux brins, explique l'observation globale de la fourche de réplication. La figure ci-contre résume la synthèse continue sur l'un des brins dit parfois "brin avancé" et discontinue sur l'autre dit "brin retardé".

la figure ci-dessous met en place quelques protéines également essentielles de la réplication.



- L'étude biochimique des ADN polymérases (car il en existe plusieurs avec chacune un rôle précis dans la cellule), a également montré qu'aucune n'était capable de relier deux mononucléotides entre eux comme peut le faire l'ARN polymérase que nous verrons au chapitre mais, comme il a été dit, elle crée une liaison phosphodiester entre le 5' d'un mononucléotide et l'extrémité 3'OH d'une chaîne déjà commencée. Ces chaînes préexistantes constituent des "amorces" pour les ADN- polymérases et vont être fabriquées, aux origines de réplications par des "primases" qui sont elles mêmes des polymérases utilisant des ribonucléotides.

Ceci implique que chaque "fragment d'Okasaki" (du nom de l'auteur des travaux ayant prouvé que le mode de synthèse est bel et bien discontinu pour l'un des brins) est précédé d'une amorce d'ARN, qui devra être éliminée, remplacée par une séquence d'ADN et qu'une ligase devra intervenir pour relier les morceaux au cours de l'élongation.

Cette analyse, liée en grande partie à l'étude de mutants, a également permis de découvrir que l'enzyme de Kornberg n'était pas la seule ADN polymérase présente dans la cellule bactérienne (par contre elle est la plus abondante). A coté de cette enzyme, rebaptisée ADN polymérase I, il existe des ADN polymérases II et III.
Ces trois enzymes ont des propriétés communes mais n'assurent pas exactement les mêmes fonctions in vivo.
On sait maintenant que la polymérase purifiée par Kornberg n'est pas celle qui assure l'élongation c'est à dire l'essentiel de la réplication in vivo mais l'ADN polymérase III.
Toutes catalysent l'adjonction d'un nucléoside 5' triphosphate à l'extrémité 3' d'un polynucléotide en créant une liaison covalente 3' 5' phosphodiester. Toutes possèdent également des activités exonucléasiques, c'est à dire qu'elles sont capable d'exercer une fonction inverse d'hydrolyse de liaison phosphodiester, soit dans le sens 3'-5' soit 5'-3' soit dans les deux, cette activité joue un grand rôle dans le contrôle de la fidélité de la réplication en permettant à l'enzyme elle-même de corriger des erreurs d'appariement qu'elle aurait pu commettre (elle joue également un rôle dans la réparation de molécules d'ADN endommagées par divers agents).
Grâce à cette "double compétence", la polymérase I est capable de dégrader les amorces d'ARN tout en "bouchant les trous", la ligase intervenant en dernier.

C'est probablement au prix de la complication des mécanismes enzymatiques évoqués que la fidélité de la réplication est assurée et que l'information génétique se transmet intacte de générations en générations.

                     

Les acides nucléiques sont les macromolécules de stockage de l'information. La structure double de l'ADN et son mode de synthèse par réplication semi-conservative rendent compte de la façon dont cette information est transmise.

1   2   3   4   5   6   7   8   9   ...   25

similaire:

Introduction aux protéines iconIntroduction générale Introduction aux ordinateurs

Introduction aux protéines iconUne introduction aux processus sédimentaires

Introduction aux protéines iconChapitre I : Introduction aux réseaux informatiques

Introduction aux protéines icon1 Introduction aux expérimentations en matière de sûreté de l’espace urbain

Introduction aux protéines iconDenis Monière/Jean Herman Guay (1987) Introduction aux théories politiques

Introduction aux protéines iconTD/tp 1 Introduction au sdk d’Android 1 Introduction
«*. univ-lr fr» pour éviter d’utiliser le proxy pour les adresses internes à l’ulr

Introduction aux protéines iconCharles-Henry cuin, Librairie dr0Z, Genève, 2000. Introduction
«des vertus lustrales à l’eau du bain». Les défenseurs d’un positivisme tempéré empruntent une voie médiane et affirment la vocation...

Introduction aux protéines iconIntroduction aux droits de l'informatique
«création intellectuelle» : invention, solution technique, œuvre littéraire ou artistique, marque, dessins et modèles industriels,...

Introduction aux protéines iconBibliographie sélective Table des matières introduction generale...
«Santé publique» et est destiné aux étudiants en deuxième année de graduat en Sciences Infirmières pour toute les orientations

Introduction aux protéines iconProgramme du symposium et enjeux
«Entreprises étendues» aux partenaires, aux fournisseurs ou aux clients conduit








Tous droits réservés. Copyright © 2016
contacts
ar.21-bal.com