télécharger 0.98 Mb.
|
Attendus de fin de cycle» (Se) repérer et (se) déplacer dans l’espace en utilisant ou en élaborant des représentations » Reconnaitre, nommer, décrire, reproduire, représenter, construire des figures et solides usuels » Reconnaitre et utiliser quelques relations géométriques (notions d’alignement, d’appartenance, de perpendicularité, de parallélisme, d’égalité de longueurs, d’égalité d’angle, de distance entre deux points, de symétrie, d’agrandissement et de réduction)
![]()
Repères de progressivité Il est possible, lors de la résolution de problèmes, d’aller avec certains élèves ou avec toute la classe au-delà des repères de progressivité identifiés pour chaque niveau. Les apprentissages spatiaux : Dans la continuité du cycle 2 et tout au long du cycle, les apprentissages spatiaux se réalisent à partir de problèmes de repérage de déplacement d’objets, d’élaboration de représentation dans des espaces réels, matérialisés (plans, cartes…) ou numériques. Les apprentissages géométriques : Ces apprentissages développent la connaissance de figures pla- nes, de solides mais aussi de relations entre objets et de propriétés des objets. Le parallélogramme ne fait l’objet que d’une première fréquentation en 6e et est notamment l’occasion d’un retour sur la notion de parallélisme. Le choix des objets considérés et des relations et propriétés à prendre en compte, les contraintes sur les instruments à utiliser, les gestes à réaliser, les justifications et moyens de validation acceptés permettent d’organiser la progressivité des apprentissages et d’enrichir les pro- cédures de résolution des élèves. Ainsi, ce ne sont pas seulement les tâches qui évoluent d’un niveau à l’autre mais les procédures pour réaliser ces tâches. La progressivité s’organise en prenant en compte : » les gestes de géométrie : certaines compétences de construction, comme tracer un segment d’une longueur donnée ou reporter la longueur d’un segment (CM1-CM2) ou encore reproduire un angle (6e) sont menées conjointement avec les apprentissages du domaine « grandeurs et mesures », » l’évolution des procédures et de la qualité des connaissances mobilisées : ainsi, l’élève doit tout d’abord savoir reconnaitre un carré en prenant en compte la perpendicularité et l’égalité des mesures des côtés (CM1-CM2) puis progressivement de montrer qu’il s’agit d’un carré à partir des proprié- tés de ses diagonales ou de ses axes de symétrie (6e), » les objets géométriques fréquentés, » la maitrise de nouvelles techniques de tracé (par rapport au cycle 2). Le raisonnement : A partir du CM2, on amène les élèves à dépasser la dimension perceptive et instrumentée pour raisonner uniquement sur les propriétés et les relations. Par exemple, l’usage de la règle et du compas pour tracer un triangle, connaissant la longueur de ses côtés, mobilise la connais- sance des propriétés du triangle et de la définition du cercle. Il s’agit de conduire sans formalisme des raisonnements simples utilisant les propriétés des figures usuelles ou de la symétrie axiale. Un vocabulaire spécifique est employé dès le début du cycle pour désigner des objets, des relations et des propriétés. Vocabulaire et notations : Au primaire, lorsque les points seront désignés par des lettres, les pro- fesseurs veilleront à toujours préciser explicitement l’objet dont il parle : « le point A », « le segment [AB] », « le triangle ABC », etc. Aucune maitrise n’est attendue des élèves pour ce qui est des codages usuels (parenthèses ou crochets) avant la dernière année du cycle. Le vocabulaire et les notations nouvelles ( , [AB], (AB), [AB), AB, ) sont introduits au fur et à mesure de leur utilité, et non au départ d’un apprentissage. Les instruments : Au primaire, les élèves auront recours à différentes règles (graduées ou non, de diverses tailles), à des gabarits, à l’équerre, au compas. Ils commenceront à utiliser le rapporteur au collège. Symétrie axiale : Un travail préalable sur les figures permet d’illustrer l’aspect global de la symétrie plutôt que de procéder de façon détaillée (par le point, le segment, la droite). Pour construire ou compléter des figures planes par symétrie, différentes procédures seront abordées au cours du cycle. Elles évoluent et s’enrichissent par un jeu sur les figures, sur les instruments à disposition et par l’emploi de supports variés. Initiation à la programmation : Une initiation à la programmation est faite à l’occasion notam- ment d’activités de repérage ou de déplacement (programmer les déplacements d’un robot ou ceux d’un personnage sur un écran), ou d’activités géométriques (construction de figures simples ou de figures composées de figures simples). Au CM1, on réserve l’usage de logiciels de géométrie dyna- mique à des fins d’apprentissage manipulatoires (à travers la visualisation de constructions instru- mentées) et de validation des constructions de figures planes. À partir du CM2, leur usage progressif pour effectuer des constructions, familiarise les élèves avec les représentations en perspective cavalière et avec la notion de conservation des propriétés lors de certaines transformations. Repères de progressivité : le cas particulier de la proportionnalitéLa proportionnalité doit être traitée dans le cadre de chacun des trois domaines « nombres et calculs », « grandeurs et mesures » et « espace et géométrie ». En CM1, le recours aux propriétés de linéarité (additive et multiplicative) est privilégié dans des problèmes mettant en jeu des nombres entiers. Ces propriétés doivent être explicitées ; elles peuvent être institutionnalisées de façon non formelle à l’aide d’exemples (« si j’ai deux fois, trois fois… plus d’invités, il me faudra deux fois, trois fois… plus d’ingrédients » ; « si 6 stylos coutent 10 euros et 3 stylos coutent 5 euros, alors 9 stylos coutent 15 euros » ). Les procédures du type passage par l’unité ou calcul du coefficient de proportionnalité sont mobilisées progressivement sur des problèmes le nécessitant et en fonction des nombres (entiers ou décimaux) choisis dans l’énoncé ou intervenant dans les calculs. À partir du CM2, des situations impliquant des échelles ou des vitesses constantes peuvent être rencontrées. Le sens de l’expression « …% de » apparait en milieu de cycle. Il s’agit de savoir l’utiliser dans des cas simples (50 %, 25 %, 75 %, 10 %) où aucune technique n’est nécessaire, en lien avec les fractions d’une quantité. En fin de cycle, l’application d’un taux de pourcentage est un attendu. Croisements entre enseignements L’utilisation des grands nombres entiers et des nombres décimaux permet d’appréhender et d’estimer des mesures de grandeur : approche de la mesure non entière de grandeurs continues, estimation de grandes distances, de populations, de durées, de périodes de l’histoire, de superficies, de prix, de mémoire informatique… Les élèves apprennent progressivement à résoudre des problèmes portant sur des contextes et des données issus des autres disciplines. En effet, les supports de prises d’in- formations variés (textes, tableaux, graphiques, plans) permettent de travailler avec des données réelles issues de différentes disciplines (histoire et géographie, sciences et technologie, éducation physique et sportive, arts visuels). De plus, la lecture des données, les échanges oraux pour expliquer les démarches, et la production de réponses sous forme textuelle contribuent à travailler plusieurs composantes de la maitrise de la langue dans le cadre des mathématiques. Enfin, les contextes des situations de proportionnalité à explorer au cours du cycle peuvent être illustrés ou réinvestis dans d’autres disciplines : problèmes d’échelle, de vitesse, de pourcentage (histoire et géographie, éduca- tion physique et sportive, sciences et technologie), problèmes d’agrandissement et de réduction (arts visuels, sciences). Les activités de repérage ou de déplacement sur un plan ou sur une carte prennent sens à travers des activités physiques (course d’orientation), mais aussi dans le cadre des enseignements de géographie (lecture de cartes) ou de technologie (réalisation d’un objet simple). Les activités de reconnaissance et de construction de figures et d’objets géométriques peuvent s’appuyer sur des réalisations artis- tiques (peinture, sculpture, architecture, photographie, …). |
![]() | ![]() | ||
![]() | ![]() | ||
![]() | ![]() | ||
![]() | «premier cycle» et 2ème cycle selon la nomenclature de l’école fondamentale en Haïti. Peut-on parler d’une démarche bilingue ? Y... | ![]() | |
![]() | ![]() | «agiles» ou collaboratives», explique Thomas Murphy, Directeur de Programme au meta group. «Les durée moyenne des projets a diminué... |